Data Analysis Methodology
Full data analysis workflow: data exploration, technical indicator calculation, statistical modeling, visualization
Methodology Overview
Using synthetic stock data to demonstrate a complete data analysis workflow, focusing on methodology and technical skills rather than specific trading strategies.
Step 1: Data Exploration & Cleaning
Statistical description and quality check of raw data
Statistical Summary
Mean
176.54
Std Dev
21.50
Min
144.24
Max
221.77
Skewness
0.1302
Kurtosis
-1.1825
N = 200 trading days | Synthetic data (seed=42)
Step 2: Technical Indicator Calculation & Visualization
Calculate and visualize common technical analysis indicators
Price
Volume
Step 3: Statistical Modeling
Apply statistical methods for in-depth analysis
Return Distribution
Normal Distribution Fit: μ=0.0019, σ=0.0111
Correlation Matrix
Linear Regression
y = 0.0121x + 0.001828
R² = 0.0001
Hypothesis Testing
H₀
μ = 0
H₁
μ ≠ 0
Step 4: Analysis Conclusions & Decision Framework
Synthesize multi-indicator signals into analysis conclusions
Signal Summary
Methodology Summary
Step 1: Data Exploration & Cleaning
Step 2: Technical Indicator Calculation & Visualization
Step 3: Statistical Modeling
Step 4: Analysis Conclusions & Decision Framework